The crystal field stabilisation energy (CFSE) of $[Fe(H_2O)_6]Cl_2$ and $K_2[NiCl_4]$, respectively, are

(2019 Main, 10 April II)

(a)
$$-0.4 \Delta_o$$
 and $-1.2 \Delta_t$

(b)
$$-0.4 \Delta_o$$
 and $-0.8 \Delta_t$

(c)
$$-2.4 \Delta_o$$
 and $-1.2 \Delta_t$

(d)
$$-0.6 \Delta_o$$
 and $-0.8 \Delta_t$

Key Idea Crystal field stabilisation energy (CFSE) for octahedral complexes = $(-0.4x + 0.6y)\Delta_o$ where, x = number of electrons occupying t_{2g} orbital.

y = number of electrons occupying e_g orbital. CFSE for tetrahedral complexes

$$= (-0.6x + 0.4y)\Delta_t$$

where, x = number of electrons occupying e orbital.

y = number of electrons occupying t orbital.

In [Fe(H₂O)₆]Cl₂, H₂O is a weak field ligand, so it is a high spin (outer orbital) octahedral complex of Fe²⁺.

$$Fe^{2+}(3d^{6}) = \begin{array}{|c|c|c|c|c|}\hline 1 & 1 & e_{g} \\\hline 1 & 1 & 1 \\\hline \end{array} t_{2g}$$

$$\therefore \text{ CFSE} = (-0.4x + 0.6y)\Delta_o$$

$$=[-0.4 \times 4 + 0.6 \times 2]\Delta_o = -0.4\Delta_o$$

In K₂[NiCl₄], Cl⁻ is a weak field ligand, so it is a high spin tetrahedral complex of Ni²⁺.

$$Ni^{2+}(3o^6) = \begin{array}{c|c} \hline 1 & 1 & 1 \\ \hline 1 & 1 & e \\ \hline \end{array}$$

$$\therefore CFSE = (-0.6 \times 4 + 0.4 \times 4)\Delta_t = -0.8\Delta_t$$